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Nomenclature

Introduction
Natural convection in a horizontal annular space filled with a porous material
has received considerable attention in the past. The interest in this basic
configuration has been stimulated, to a large extent, by the fact that this
geometry is of importance in the field of thermal insulating engineering. Much
of the activity on this topic, both numerical and experimental, has been
summarized in a recent book by Nield and Bejan (1992) . From this review of the
literature it is clear that so far, investigations have been concerned solely with
isotropic porous media. The case of an anisotropic porous horizontal annulus,
which is encountered in engineering practices, has not been studied. Earlier
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A = added resistivity tensor due to anisotropy
g
r

= terrestrial gravity
ĝ = unit vector in the downward direction
I = identity matrix
k = thermal conductivity of the satured

porous medium, [Wm–1 K–1]
K = permeability tensor of the anisotropic

porous medium, [m2]
K1,K2 = extreme values of permeability defining

the principal axes, [m2]
K* = permeability ratio, K1/K2
Nu = overall Nusselt number defined by

equation (13)
P = overall hydraulic resistivity tensor
p = dimensionless pressure
R = radius ratio, r2′ /r1′
Ra = Rayleigh number, K1 gη∆ T ′r1′/να
Ra* = modified Rayleigh number, Ra/√

––
K*

r = dimensionless radial coordinate
t = dimensionless time
T = dimensionless temperature
∆T ′ = characteristic temperature difference
u, ν = dimensionless velocity components in r

and ϕ directions  
V
v

= dimensionless velocity vector

Greek symbols
α = thermal diffusivity, (k/(ρc)f) [m

2 s–1]
γ = angular coordinate of the principal axis

corresponding to K1
η = thermal expansion coefficient [K–1]
µ = dynamic viscosity of the fluid [kg m–1 s–1]
ν = kinematic viscosity of the fluid [m2 s–1]
ρ = density of the fluid [kg m–3]
(ρc)f = heat capacity of the fluid [J m–3K–1]
(ρc)p = heat capacity of the saturated porous

medium [J, m–3 K–1]
σ = heat capacity ratio (ρc)p/(ρc)f
ϕ = angular coordinate
ψ = dimensionless stream function

Superscripts
′ = dimensional variable

Subscripts
1 = value on inner cylinder
2 = value on outer cylinder

Other symbols
∇ 2 = Laplacian operator (∇ 2 = 1r

∂
∂r (r –∂∂r) + ( 1r2 ––∂

2

∂ϕ 2)
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studies on natural convection in a saturated anisotropic porous medium are
concerned mostly with the case of horizontal layer heated from below (see for
instance Ephere(1977) and Kvernvold and Tyvand (1979)). Castinel and
Combarnous (1977) have analyzed the case of inclined layers while Burns et al.
(1977) have examined natural convection in a vertical slot filled with an
anisotropic porous medium. In those two studies, the porous medium was taken
to be thermally isotropic. The anisotropy of both permeability and thermal
conductivity was considered by Ni and Beckermann (1991), Degan and Vasseur
(1996; 1997) Degan et al. (1995) for the case of a rectangular cavity and by Chang
and Hsiao (1993) for the case of a vertical cylinder.

The present investigation deals with the two-dimensional natural convection
in a horizontal annulus filled with an anosotropic porous medium. In a way
similar to Patil et al. (1989), anisotropy in permeability is considered with
principal axes oriented at a constant but arbitrary angle with respect to the
vertical direction. The inner and outer boundaries of the flow domain are
isothermal with the outer one being warmer. The problem is formulated in
terms of Darcy-Boussinesq approximation and solved numerically, using a
time-marching finite-difference method, until a steady state is reached. Effects
of various parameters, such as the Rayleigh number Ra*, the permeability ratio
K* and the angular position γ of the principal axes are analyzed. By contrast
with previous works on the same geometry, dealing with isotropic porous
media, such as the one by Caltagirone (1976) or Kaviany (1986), the arbitrary
inclination of the principal axes in the present investigation does not allow the
use of a symmetry hypothesis with respect to the vertical diameter and
consequently the whole annulus must be taken as flow domain (doubly-
connected domain) with the possibility of a net flow circulating between the two
boundaries.

Statement of the problem
Governing equations are expressed in the polar coordinate system, shown in
Figure 1. The flow domain is limited by two concentric horizontal cylinders of
radius r1′ and r2′ , and consists of a fluid saturated anisotropic porous medium
with principal axes defined by the extreme permeabilities K1 and K2.The
principal axes are in the same direction for all the points of the flow domain, i.e.
the angle γwith the origin keeps the same value at any position (r, ϕ). The inner
and outer boundaries are at isothermal temperatures T1′ and T2′ , respectively,
with T2′ > T1′.

With the use of the Boussinesq approximation, the generalized momentum
equation for anisotropic porous media (Bear, 1972) becomes in dimensionless
form:

(1)

in which Ra = K1 ĝ η∆T ′r1′/να , is the porous medium Rayleigh number, P = K–1,
a second order resistivity tensor and ĝ, a unit vector in the downward (gravity)
direction. Variables, V

r

, p and T are the velocity vector, dynamic pressure and
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temperature respectively. Those have been made dimensionless by using the
scales r1′ , α r1′ , αµ/K1 and ∆T ′ = T2′ – T1′ for length, velocity, pressure and
temperature respectively. All other symbols are defined in nomenclature.

For two-dimensional motion, P takes the form:

(2)

in which β = ϕ – γ and K* = K1/K2. The resistivity tensor in equation (2) is
already dimensionless. It may be split in the sum of two terms:

(3a)

For K* > 1, the first term I (identity matrix) represents the isotropic resistivity
based on the maximum permeability K1, (i.e. minimum resistivity) and the
second term A is the added resistivity due to anisotropy. If K* < 1, one can
renormalize equation (3a), by dividing it by K*. The permeability K2, which
now corresponds to the maximum permeability, replaces K1 in the Rayleigh
number and pressure scale while a new resistivity tensor of the form:

Figure 1.
Geometry of the

problem
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(3b)

replaces P on the left hand side. The differences found in the second term of (3b)
are due to the shift by 90° of the minimum resistivity (or maximum
permeability).

It is worth noticing that the second term in equation (3a) or in equation (3b)
is equivalent, under some restrictions, to the added resistivity of a magnetic
field B

r

acting on a porous medium saturated with a conducting fluid (see
Appendix).

Other dimensionless governing equations are the continuity and energy
equations:

(4)

(5)

with boundary conditions:

(6)

The pressure gradient is eliminated by taking the curl of equation (1). We obtain:

(7)

where ψ is the stream function related to the velocity components by:

(8)

Here also, the left-hand side part of equation (7) is split into isotropic and
anisotropic terms.

The two circular boundaries define a doubly-connected region. As mentioned
earlier, one must allow for the possibility of a net circulating flow between the
two boundaries. Appropriate boundary conditions for ψ and T are:
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(9)

with ψ1 corresponding to an unknown net circulating flow around the annulus.
An additional condition is required to find ψ1. This condition is found by
integrating the ϕ component of equation (1) over 0 ≤ ϕ ≤ 2πand 0 ≤ r ≤ R, and
by using the following periodicity condition:

(10)

where f stands for any physical variable, to eliminate some terms. We obtain:

(11)

Equations (5), (7) and (8), together with boundary conditions (9) and (11) are to
be solved numerically. The governing parameters are Ra, R, γ and K*.

If ψ(r, ϕ) and T(r, ϕ) are solutions at (Ra, R, γ, K*), they are also solutions at
(Ra, R, γ + π, K*) and – ψ (r, ϕ) and T(r,– ϕ) are solutions at (Ra, R, – γ, K*).
Consequently the investigation may be limited to the range 0 ≤ γ ≤ π/2.

A modified Rayleigh number of the form:

(12)

is more appropriate to describe the results. The two extreme permeabilities K1
and K2 have the same weight in the definition (12) and it is consequently
possible to isolate in a better way the effects of the permeability ratio from other
effects normally attributed to a change in Rayleigh number. Moreover, with the
definition (12), it can be deduced that if ψ(r, ϕ) and T(r, ϕ) are solutions at (Ra*,
R, γ, K*), so they are at (Ra*, R, γ + π/2, 1/K*).

An overall Nusselt number defined as:

(13)

is used to describe the heat transfer from one boundary to the other. The value
2π/lnR corresponds to the pure conduction heat transfer.

Numerical study
Numerical solutions of the governing equations are obtained by a finite-
difference method. A successive overrelaxation method is used to solve
equation (7). The energy equation, in its time dependent form (5) is solved by an
alternating direction implicit method (ADI). The ADI approach in the ϕ
direction is based on the fact that any physical variable f should satisfy periodic
condition (10). All derivatives are discretized according to the Taylor-based
second order central difference scheme for a regular mesh size. The value of the
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stream function on the inner boundary is found by numerically evaluating the
integral (11) with a trapezoidal rule computation.

Some results for the isotropic case were obtained from the present numerical
approach and a comparison with those reported by Caltagirone (1976) is shown
in Table I.

Grid tests were done at R = 2, covering the range 0 < Ra* < 300. Since
comparisons between (18 × 36) and (36 × 72) mesh sizes gave results that were
practically identical for the range of Ra* considered in this study, the (18 × 36)
mesh size was adopted for all results. The governing coupled equations (7) and
(5) are solved iteratively with a time step of ∆t = 510–4 until the steady state is
reached.

Results and discussion
It is first instructive to examine the ranges of the governing dimensionless
parameters Ra*, K*, γ and R considered in the present study. Results are
presented for Rayleigh numbers Ra* = 100, 150 and 200, a permeability ratio K*

ranging from 0.1 to 10, and the angular position of the principal axes γ ranging
from 0 to π/2. The radius ratio is held fixed at R = 2.

The behavior of flow and temperature fields and the heat transfer rate may
be better understood by observing the evolution of the flow patterns obtained
when a single parameter is changed at a time. For instance, the set of Figures
2(a-c) shows flow (at left) and temperature fields (at right) by streamlines and
isotherms respectively, for different values of the permeability ratio K*, while γ
and Ra* are maintained at 0 and 200, respectively. In those figures, the direction
and relative importance of the maximum and minimum permeabilities are
illustrated by the angular position and relative lengths of the perpendicular
lines shown at the center of the annulus. The sequence of figures evolves from
top to bottom with the first figure having the maximum permeability in the
vertical direction and the last one having the maximum permeability in the
horizontal direction. Figure 2(b) shows flow and temperature fields for K* = 1
(isotropic porous medium). Those fields, which are practically identical to those
shown in the article by Caltagirone, are given for comparison purpose.
Following the definition (12), the solution shown in Figure 2(a) is equivalent to
the one obtained for Ra* = 200, γ = 90° and K* = 0.125. All flow and
temperature fields shown in Figure 2 are symmetrical with respect to the
vertical diameter and no net circulating flow exists around the annulus (ψ1 = 0).
The flow pattern shown in Figure 2(a) has a particular feature. The

Caltagirone (1976) Present approach
Ra Nu ψmax Nu ψmax

25 1.099 2.892 1.099 2.904
50 1.328 5.493 1.332 5.560

100 1.828 9.748 1.847 9.963
200 2.625 15.859 2.661 16.35

Table I.
Results of the isotropic
case compared with
those of Caltagirone
(1976)
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Figure 2.
Effect of permeability
ration K* on the flow

and temperature fields
for Ra* = 200 and γ = 0°

(a) K* = 8

(b) K* = 1

(c) K* = 0.125

Ψmax = 17.60

Ψmax = 16.35

Ψmax = 10.80
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permeability being small in the horizontal direction, a greater resistance is
offered to the fluid in that direction by the solid matrix and, as a consequence,
the unstable layer at the lower part of the annulus generates two additional
(secondary) convection cells. Those secondary cells would also occur for an
isotropic medium for R → 1.

Figure 3 shows the temperature and flow fields obtained by increasing the
value of the Rayleigh number Ra* while maintaining constant γ and K*. The left
column displays isotherms and the right one displays streamlines for γ = 0°
and K* = 0.25. For small Rayleigh numbers such as the one of Figure 2(a), the
isotherms are weakly disturbed from the concentric (pseudo-conduction)
pattern. As Ra* increases, the convective motion becomes more important and
the isotherms produce steep gradients near the wall in the bottom region (ϕ = 0°)
and in the upper region (ϕ = 90°) for the outer and inner boundaries respectively.

Figure 4 shows the overall Nusselt number Nu, defined in equation (13), as a
function of the permeability ratio K* for Ra* = 100, 150 and 200 and γ = 0° (or
equivalently, γ = 90°, as shown by the double scale of the abscissa). The degree
of anisotropy corresponds to the distance from unity measured on the
logarithmic scale of the abscissa. Results obtained by Caltagirone (1976) for the
isotropic case (K* = 1) are also shown in this figure. It is observed that the heat
transfer is a enhanced for a larger permeability in the vertical direction. It is also
observed that the Nusselt number encounters a drastic increase at K* ~2.5-3.
This peculiar behavior corresponds to the occurence of secondary convective
cells at the bottom of the annulus (see Figure 2(a)).

The influence of the angular position γ of the principal axes on the flow and
temperature fields is now considered. In Figure 5, the flow (at right) and
temperature (at left) fields are shown for Ra* =150, K* = 0.25 and γ = 0°, 30°,
45°, 70° and 90°. By comparing the cases 5b,c,d with 5a,e, one can deduce that
the anisotropy does not effect equally the two main or primary cells for γ≠ 0° or
90°. For 0° < γ < 90°, the left cell becomes stronger and extends over a larger
part of the flow domain which includes the inner boundary, thus producing a
net circulating flow (ψ1 ≠ 0). This net circulating flow is a function of γ as well
as of the degree of anisotropy characterizing the porous medium. It is observed
that the net circulating flow ceases and that the original symmetry with respect
to the vertical diameter reappears when γ reaches 90°. The sequence Figure 5(a-
c) shows how the primary cells gradually absorb the secondary cells with 
departing from zero.

Figure 6 shows the net circulating flow ψ1 obtained at an angle γ = 45°, as a
function of K*, for Ra* = 100, 150 and 200. As a consequence of the particular
definition of the Rayleigh number, equation (12), and of the logarithmic scale
chosen for K*, a centro-symmetry (or symmetry with respect to the point ψ1 = 0,
K* = 1) is found for all the curves in this figure. The centro-symmetry exists
only for the particular value γ = 45°. Another scale for K*, corresponding to
γ = – 45°, is also given in the same figure.

The effect of the inclination angle of the principal axes on the heat transfer is
illustrated on Figure 7 where Nu is given as a function of γ for Ra* = 100, 150
and 200. In that figure, Nu is a monotonically increasing function of γ for all the
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Figure 3.
Flows and temperature

fields at different
Rayleigh number Ra*,

for K* = 0.25 and γ = 0

(a) Ra* = 50

(b) Ra* = 150

(c) Ra* = 250

Ψmax = 3.74

Ψmax = 10.18

Ψmax = 14.82
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curves. The three horizontal lines correspond to the values of Nu for the
isotropic case K* = 1, those values being unaffected by the angle γ and being the
same as those of Figure 7 for K* = 1. It is seen that those horizontal lines cross
their corresponding anisotropic curves in the neighborhood of γ = 45°.

As mentioned earlier, the net circulating flow ψ1 results from the loss of
symmetry when γ ≠ 0° or 90°. In Figure 8, ψ1 is shown as a function of γ for
Ra* = 100, 150 and 200 while K* is maintained equal to 0.25. The curves are
not symmetrical with respect to 45°. With γ increasing from 0° to 90°, ψ1
increases to reach a maximum at a value of γbelow 40° for the Ra* = 200 curve.
It then decreases steadily to reach zero at γ = 90°.

Conclusions
The problem of a horizontal anisotropic porous annulus with isothermal
boundary conditions applied on both inner and outer boundaries has been
investigated. The anisotropy considered concerns exclusively the permeability.

Results indicate that for an arbitrary inclination of the principal axes which
differs from the horizontal (or vertical) direction, no symmetry of the flow and
temperature fields exists with respect to the vertical diameter. In the absence of
symmetry, a net circulating flow occurs around the annulus with the maximum
value reached when the principal axis, corresponding to the maximum
permeability, at ~40° with respect to the vertical diameter, for the Rayleigh
numbers considered in this study.

When the principal axes are in the vertical (horizontal) direction, symmetric
flow and temperature fields are obtained. A small permeability in the horizontal

Figure 4.
Nusselt number Nu
function of the
permeability ratio of K*,
for Ra* = 100, 150 and
200

Caltagirone (1976)
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Figure 5.
Effect of the inclination

angle γ on the flow (at
right) and temperature

(at left) fields for
Ra* = 150 and K* = 0.25

γ = 0° Ψ1 = 0.000

γ = 30° Ψ1 = 2.709

γ = 45° Ψ1 = 2.858

γ = 70° Ψ1 = 1.912

γ = 90° Ψ1 = 0.000

(a)

(b)

(c)

(d)

(e)
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direction enhances the heat transfer and promotes the occurrence of additional
cells in the unstable layer at the lower part of the annulus, in a way comparable
to a radius ratio decreasing toward unity.

Finally, it has been shown in the Appendix that the effect of anisotropy in
permeability is equivalent to the one of a magnetic field acting in the direction

Figure 6.
Net circulating flow ψ1
function of the
permeability ratio K*,
for Ra* = 100, 150 and
200
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Figure 7.
Nusselt number Nu
function of the
inclination angle γ for
Ra* = 100, 150 and 200
(K* = 0.25)

   
*Ra = 200

150

100

3.5

3.0

2.5

2.0

1.5

1.0

0 20 40 60 80
γ

Nu



Natural 
convection in 

annulus

701

of the maximum permeability, with the restrictions that the flow stays two-
dimensional and that the induced magnetic field due to the fluid motion may be
neglected, as well as the Joule dissipation of heat.
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Appendix
For a two-dimensional frame with insulated boundaries, the electromagnetic or Lorentz body
force (by unit volume) acting on a conducting fluid subjected to a magnetic field reduces to
(Garandet et al. (1992)):

(A1)

where σm is the electrical conductivity, J
r

′ , the electrical current and B
r

′ , the imposed magnetic
field. For the case of a porous medium saturated with a conductive fluid, V

r

′ becomes the filtration
velocity.

If B
r

′ is normal to the two-dimensional plane (r, ϕ) considered in the present article, i.e. if B
r

′ =
(0, 0, B′), then the right hand side of (A1) reduces to:

(A2)

Thus the effect of the magnetic field is equivalent to an added isotropic Darcy resistance. This fact
has already been brought to attention by Ni et al. (1993).

If B
r

′ is lying in the (r, ϕ) plane, and having an angle γ with respect to the origin, i.e. if B
r

′ = (B′
cos β, – B′ sin β, 0), then the equation (A1) may be expressed as:

(A3)

the second order tensor in (A3) being equivalent to the added resistivity tensor due to anisotropy,
equation (3). The coefficient σmB′2/ρ0 becomes the Hartman number to the square, Ha2 =
B
r

′2Kσm/µ and replaces the coefficient (1 – K*) in equation (3a).
Of course, a third direction z is always involved in real flow situations and one has to keep in

mind that the equivalence found in (A2) or (A3) does not consider that direction.


